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Scalar Gravity and Higgs Potential 

H .  D e h n e n  I and  H .  F r o m m e r t  ~ 

Received November 16, 1989 

A general Lorentz-invariant scalar gravitational interaction theory with self- 
interaction is presented. It is shown that this theory leads to the recently proposed 
Higgs-field gravity and thereby provides a new approach to the Higgs potential. 

1. INTRODUCTION 

Scalar theories of elementary particles and their interactions are of 
interest due to their importance as Higgs fields in the theory of spontaneous 
symmetry breaking. In addition, scalar theories of gravitation have a long 
history; the classical example is the Newtonian theory of gravity, but also 
more modern theories, for example, the Dicke-Brans-Jordan theory (Brans 
and Dicke, 1961) and the examples in Misner et al. (1973, p. 178, Exercise 
7.1, and p. 1070) deal with scalar interactions. 

Recently we have pointed out (Dehnen and Frommert, 1990; Dehnen 
et al., 1990) that the scalar interaction mediated by the Higgs field in theories 
with spontaneous symmetry breaking is of gravitational type, i.e., it is 
coupled to the masses of the elementary particles and not to any other 
charges: Mass, not some current, is the source of the scalar Higgs field, and 
the Higgs field acts back by its gradient on the mass in the momentum law. 
Moreover, the spontaneous symmetry breaking generates exactly the mass 
of  the elementary particles, which then serves as active and passive gravita- 
tional mass. Thereby, Einstein's "principle of relativity of inertia" [Mach's 
principle; see Einstein (1917)] is fulfilled: Mass is generated by the same 
mechanism as the gravitational interaction. In this sense, the inertial mass 
as a measure for the resistance of a particle against the relative acceleration 
with respect to other particles has its origin in the gravitational interaction 
with all other particles in the universe. 
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Here I go the opposite way and construct a very general scalar gravita- 
tional theory between elementary particles on the level of special relativity. 
It is imposed to contain self-interaction, and to obey a Yukawa-type field 
equation, i.e., I consider a massive scalar field. This is even necessary, 
because the only source of Lorentz-invariant scalar gravity is the trace of 
the energy-momentum tensor, which vanishes in the massless case. I show 
that the scalar field equation is exactly that of the Higgs field with the 
correct Higgs potential. 

2. STRUCTURE OF THE LAGRANGE DENSITY 

The most general Lagrange density of a pure scalar field ~ containing 
the derivatives of ~ at most quadratically is given by (sign +, , , - )  

Lo = Lo(Oxq~, q~)=�89 V(~)  (2.1) 

where V(~) is some arbitrary functional of  the field q~, usually called the 
potential term of  Lo. 

To construct a theory of  scalar interaction, a "matter" term LM and an 
"interaction" part Lin t must be added to (2.1) in order to obtain the complete 
Lagrange density: 

L = Lo+ LM + Lint (2.2) 

where LM is the Lorentz-invariant Lagrange density of  the pure matter 
fields ~./A (A represents some set of  inner, spinor, or tensor indices which 
are not specified here) and Lint is the interaction part, depending on ~o and 
~O a only and not on their derivatives: 

LM = LM(Ox~b A, 1] IA) (2.3) 

Lint = tint(~o, ~/a)  (2.4) 

The field equations for r and sA obtained from (2.2) by the variational 
principle are 

OxOhq~-FOV:-OLint: = - ' r /(q~, cA) (2.5) 
aq~ 0~o 

{OLM +OLint'~ 
\ o -U  o - U ]  = 0 (2.6) 

with the source *1(~o, ~b A) of  the scalar field ~ and the canonical momentum 
of the matter field 

OLM (2.7) 
.- 0(0A, A) 
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The canonical energy-momentum tensor is given by 

T~ = T~(q~)+ T~(O) 

where 

and 

T[(q~) (0,q~)0"~ ~, a v = - ~ ,  [ ~ ( a o ~ ) a  ~ - v ( ~ ) ]  

(2.8) 

(2.8a) 

T~ ( t~ ) ---p~Ox~t A - 8~ ( L~I + Lint) (2.8b) 

are the parts of  T~' resulting from the pure scalar field ~p and the matter 
fields ~O A, respectively. It obeys, with respect to the field equations (2.5) 
and (2.6), the equation of  continuity: 

a ,T~  = 0 (2.9) 

and has the trace 

T =  T~ = T(q~)+ T(O)=[--(Ox~)Ox~+4V(q~)]+[paAOx~bA--4(LM+ Lint)] 
(2.10) 

which represents the rest mass-energy densities of the scalar field and the 
matter field, respectively. 

Splitting T~ according to (2.8), the equation of continuity (2.9) yields 

0 = a,,T'~(q~) +a~T{(O)  = - (aa~) n  + a,,T~(~) (2.11) 

where equation (2.8a) and the field equation of the scalar field (2.5) are 
inserted. Obviously, equation (2.11) can be rewritten as 

O,,T'~(tp) = (O~q~) �9 ~7 (2.11a) 

By integration over a spacelike hypersurface one obtains, neglecting bound- 
ary terms on the left-hand side of (2.11a), 

of f dtP~:=~t d3xT~ d3x(Ox~o)Tq:=Kx (2.12) 

which is the momentum law for the matter field: The 4-momentum PA of 
the matter fields on the left-hand side of (2.12) is changed with time by the  
4-force K~ caused by the 4-gradient of  the scalar field q~ acting on the matter 
field described by ~, which is simultaneously the source of the scalar field 
q~ according to (2.5). As it must be, particles that do not participate in the 
interaction are not influenced by the scalar force, due to ~7 = 0 in this case. 

Evidently equations (2.5) and (2.12) describe a self-consistent gravita- 
tional interaction only if ~? is proportional to the trace T(q0 of the energy- 
momentum tensor of  the matter field according to (2.10). 
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3. D E T E R M I N A T I O N  OF THE POTENTIAL 

Now, in a physical theory, the rest mass-energy must have a lower 
bound in order to avoid infinite negative energies, and, therefore, according 
to (2.10), the potential term V(~) should have a minimum, say, at ~ = v. 
Expanding the potential in the neighborhood of  this minimum, one obtains 

V(~o) = ]/0+21 (~ _ v)2+ (7[(q~ _ v)3] (3.1) 

with Vo = V(v) and M = const. At this stage we assume v # 0. 2 Furthermore 
it is convenient to introduce the excited scalar field X according to 

= v(1 +X) (3.2) 

With the new source 

aLint 
. . . . . . . . . . . .  v~ (3.3) 

0X 

and the new potential 

V= V ( X ) -  v 2 - v 2 2 X2+~(X3) (3.4) 

one obtains from (2.5) the field equations for the excited scalar field X, 

+ ---=ox "7 (3.5) 

with 

--=0 I7 ( M )  2 
OX --~ X + •(X 2) (3.6) 

according to which M is the mass of the excited scalar field X. Analogously, 
the new equation of continuity [see (2.11a)] reads 

O,T~(~b) = (O~X) " r (3.7) 

and the momentum law (2.12) takes the new form 

d'-'tt = ~  ~ d3xTOx(~)= f (3.8) 

Comparison with Newtonian gravity shows that 1/v 2 plays the role of  the 
gravitational constant. 

2It should be noted that in the case of  v = 0 no meaningful scalar gravity can be constructed. 
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For the establishment of the gravitational character of the scalar interac- 
tion in detail, it remains (see the last remark of Section 2) to postulate that 
the source ~ in (3.5), see also (3.8), is proportional to the trace T(0)  of  
the energy-momentum tensor of  the matter fields. This means 

= F(X) T(~b) (3.9) 

with some functional F(X). To realize the gravitational self-interaction, add 
F(x)T(x) /v  2 on both sides of  (3.5), where 

T(X) = T(~0) (3.10) 

In this way we get from (3.5) the field equation for the scalar field in the form 

a~," F(X) F(X) 
OxO~X40X v ~  T(X) v ~  [T(~b)+ T(X)] (3.11) 

Simultaneously, the momentum law (3.8) reads 

y ~ e~ = d3x (O.x)F(x)T(~,) (3.121 

Dividing (3.11) by F(X), we obtain 

1 x 1 0~" 1 vl_5 
F(Xi 0~0 X+F(x----) OX v 2 T ( X ) = - _ _ [ T ( O ) + T ( x ) ]  (3.13) 

In case of  a self-interacting scalar gravity, a functional u(x ) should 
exist in such a way that equation (3.13) takes the form (a = const) 

= -v1~2 [T(0 )  + T(u)] (3.14) OxOAu + a2u 

This is a Yukawa equation with the mass term a2u and self-interaction 
described by the term T(u); for T(u) one obtains from (2.10) and (3.10) 
using (3.2) 

T(u) = T(X ) =-/)2[(tgA,)()0Ax- 4V(x)] (3.15) 

Inserting the identity 

aX \OX2 ] (a;,x)aXx (3.16) 

into (3.14) and subtracting (3.13) after insertion of  (3.15), we find 

x+ bx2 



366 Dehnen and Frommert 

This equation must hold for arbitrary OxX, OaOaX; this requires that each of 
the three terms in (3.17) vanishes independently, resulting in 

02u 
OX 2 -  1 (3.18a) 

1 0 9  ^ 2 
4V(x) - a u (x )  = 0 (3.18b) 

F OX 

1 
F(X) = - -  (3.18c) 

au/ax  

Herewith Vo is simplified to 

with 

12//  2 1 \  
Vo=~a ~A - B - ~ - - ~ )  (3.21a) 

where C is the new integration constant. Herewith, the demanded structure 
of  (3.14) is achieved. 

Now, in order to specify the potential 1) or V explicitly, the constants 
A, B, C, and a must be determined. Remembering that V has a minimum 
at X = 0 results in the relation 

1 
C =4A 2 (3.22) 

,, B a2 
Vo = - 8  (3.22a) 

Integration of  (3.18a) determines u up to two constants of integration 
A and B: 

u = �89 2 + 2Ax  + B) = �89 + A) 2 + (B - A2)] (3.19) 

From this one has 

Ou 
- X + A (3.19a) 

OX 

and (3.18c) gives the functional F(X): 

1 
F(X) = (3.20) 

x + A  

by which (3.18b) yields after integration 
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A 
and V(X)  takes the fo rm 

2 2 12 ^ 1 (Aa~  [(I+__X~ 
~'(X) = Vo+~ - 1 (3.23) 

\ 2 /  L\ A /  

C o m p a r i s o n  of  (3.23) with (3.4) gives 

M 
a = -- (3.24) 

h 

so that  M represents  also the mass  o f  the field u [cf. (3.14)]. 
The in tegra t ion cons tant  A lacks a deeper  physical  mean ing  because  

it can be e l iminated  by  the subst i tut ion o f  the scalar  field ~ by a new one 
~b differing f rom ~o by  a cons tant  only: 

~ ~b = ~o + (A - 1)v (3.25) 

~b obeys  the same field equa t ion  (2.5) as ~ because  o f  aV/aek = a V i a n :  

a V  
a~a~r b + - -  = -7 /  (3.26) 

a4, 
The use o f  ~b instead of  ~o leads to a m i n i m u m  of  V(4~) at 

r = v ' =  fb(r = v) = A v  (3.27) 

The  new excited scalar  field is 

X' = ~b - v' = __X (3.28) 
v' A 

which  obeys  a field equa t ion  of  the fo rm of  (3.5): 

, , a~" 1 ^, 
= - -  vr--~ ~7 a~O X + aX' (3.29) 

where  

and  

v f" 
V'(X') = / ) , 2  - A 2 (3.29a) 

a L i n t  
~ ' =  v'• = A~  = - - -  (3.29b) 

aX' 

With the use 
express ion  for  V' follows f rom equat ion  (3.23): 

v ' ( x ' )  = ,2~+~ [(1 + x ' )  ~ - 1] ~ 

of  the re la t ions (3.24), (3.28), and (3.29a), the fol lowing 

(3.30) 
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where 

V~ = ~-~ = - ~  ~ (3.30a) 

Obviously only the quotient B / A  2 appears in the potential (3.30). 
Now one is able to write down the potential V(4~) in the field equation 

(3.26) explicitly; insertion of (3.30) into (3.29a) and resolution with respect 
to V give, with the use of (3.28), 

v'2 [ B \ / M \ 2  l / M \ :  2 l { M ~ 2  1 th 4 

The minimum lies at ~ = v' and this minimum value is 

B [ M ~ 2 v  '2 
v(v') T 

The quantity B / A  2 has no deeper meaning because it is contained only in 
the additive constant of the potential (3.31) or in its minimum value. For 
simplicity, I choose without restriction of generality the additive constant 
of the potential V((b) to be equal to zero; this means 

B 
~-~= 1 (3.31a) 

Evidently, equation (3.31) represents the Higgs potential, which is here 
derived by postulating a scalar self-interacting massive gravitational field. 
Moreover, the field equation (3.26) for the scalar field (b is exactly the Higgs 
field equation. 

4. S C A L A R  GRAVITY W I T H  SELF-INTERACTION 

Finally I give an explicit representation of the self-interacting massive 
scalar gravity introduced in Section 3. In view of the ground state v' for 
the scalar field th according to (3.27) and the excited scalar field X' given 
by (3.28), one can rewrite the momentum law (3.12) and the Yukawa field 
equation (3.14) with the use of (3.24) as follows: 

dt Pa = dax (OIx')F'(x'IT(g,) (4.1t 

and 

M )  1 
e e u'+ T r (4.2) 
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[ T(u') = T(X')] with 

and 

V 2 1 u ' = - ~  u =-~ u =I( I + x') 2 (4.3a) 

1 
F'(X') = AF(x') = (4.3b) 

I + X '  

using (3.19), (3.20), and (3.3 la). With respect to the 4-force on the right-hand 
side of (4.1) it is convenient to choose, instead of X', 

~ = l n ( l + x ' )  (4.4) 

as new excited scalar field. It follows that u ' =  �89 2c and equations (4.1) and 
(4.2) take the form 

d--lt PA ~" d3 X (0A~) Z(~/)  (4.5) 

0~0 ~ e2~+ -~- e 2 ~ = -  [ T ( 0 ) +  T(~)] (4.6) 

where T(~)= T(X'). Evidently, these equations describe a massive scalar 
gravitational interaction with self-interaction, where, with respect to the 
Newtonian limit (linearization in ~'), 

1 
v, 2 - 47rG3~ (4.6a) 

has the meaning of the gravitational constant (G is the Newtonian gravita- 
tional constant) and 3/is a numerical factor comparing the strength of the 
scalar gravity in question with the Newtonian one. Furthermore, in equation 
(4.6), M is the mass of the excited scalar field ~; simultaneously there 
appears a cosmological constant �89 2, which, however, drops out 
against the trace of the energy-momentum tensor of the ground state 
T(~" = 0). 

It may be of interest that a special relativistic version of the Newtonian 
gravity is included in the general theory for the special case 

v'-2=4rrG (3, = 1) (4.7a) 

and 

M <  h ~ lO_26(eV' ~ (4.7b) 
C" (10 4 light-years) \C2/ 

so that the range of this scalar gravity is at least 104 light-years, because 
there is experimental evidence that Newton's law of gravitation is valid at 
least up to this distance. 
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